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a b s t r a c t

This article presents various important tools of chemometrics utilized as data evaluation tools generated
by various hyphenated analytical techniques including their application since its advent to today. The
work has been divided into various sections, which include various multivariate regression methods and
multivariate resolution methods. Finally the last section deals with the applicability of chemometric tools
in analytical chemistry. The main objective of this article is to review the chemometric methods used in
analytical chemistry (qualitative/quantitative), to determine the elution sequence, classify various data
sets, assess peak purity and estimate the number of chemical components. These reviewed methods
further can be used for treating n-way data obtained by hyphenation of LC with multi-channel detectors.
We prefer to provide a detailed view of various important methods developed with their algorithm in
favor of employing and understanding them by researchers not very familiar with chemometrics.

& 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Analytical procedure is a powerful tool that has the potential to
increase the efficiency of audits since it is a relatively low-cost
procedure that seems to have considerable value in identifying
errors or irregularities and in guiding audits. Analytical result is one
of the keys to guarantying the quality of products. These enable us
to verify the stability and purity of pharmaceutical and food
products. Hence, we say that analytical procedures must comply
with the audits, if the consistency of their results is assured [1].

In the present era analysts have increasing interest in the
chromatographic and spectroscopic analyses of complex mixtures
such as drugs, herbal medicines, food and blood plasma samples.
To achieve the best separation quality in support of ensuing quali-
tative or/and quantitative analysis, chromatographic and spectro-
scopic conditions should be optimized according to the particular
analytical objectives. So the important and significant factors like
solvent, mobile phase, pH and column temperature affect the out-
come of analysis and should be defined. In addition an experimental
procedure also approaches the chemical reality of a sample. The next
step involves determining the resolution or separation quality
measured in terms of response or optimization function, which is
followed by the development of a mathematical or statistical model
that describes the relationship between analytical (spectroscopic/
chromatographic) parameters and the responses of the designed
experiments and at last predict optimal separation conditions. Few
times it might be repeated and the predicted optimal conditions will
be modified and validated to achieve desirable analytical results [2].

Analytical results involve resolution, asymmetry ratio, peak
purity, precision, accuracy, robustness and so on. For evaluating
these parameters from complex mixtures, a practical response is
most likely to be multi-criterion, i.e., one weighting gives several
different criteria. So, some response functions like derringer's
response function are used traditionally [3,4].

Obviously, high-quality analytical results can rarely be obtained
by optimizing an inappropriate response function not well related
to the actual separation quality and special analytical objectives.
Many traditional response functions involve single-response
detectors. Traditional response function may fail to characterize
some crucial aspects of separation quality and encounter some
difficulties in practical use. However, now recent approaches involve
different hyphenations, e.g. HPLC-DAD, GC–MS and LC–NMR that can
basically increase the available information, and are also useful for
qualitative and qualitative analyses. With the aid of the spectral
information in hyphenated instruments, greatly enhanced perfor-
mance is seen in terms of the elimination of instrumental interfer-
ences, retention time shift correction, selectivity, chromatographic
separation abilities and measurement precision; however, data
coming from these instruments is very complex and difficult to
resolve or interpret [5].

Therefore to achieve these results from our instrument we
require an appropriate mathematical and statistical approach
using a suitable response function. The proper use of such a model
with information obtained from hyphenations will cast new light
on the evaluation of analytical data. Therefore, the hyphenated
technique is further combined with chemometric approaches to
develop a clear picture of herbal fingerprint.

Thus, our main aim is to discuss the various chemometrics tools
with respect to regular analysis to improve the quality of analytical

determinations of complex samples by fulfilling the performance
criteria. As we know there is a wide gap between analysts and
chemometricians. Thus, many times, they are not able to use
analytical instruments. In the present review we have discussed
analytical process hyphenated with multivariate analysis and the
application of various tools of multivariate analysis in analytical
chemistry.

2. Origin and development of chemometrics

In 1971, a Swedish scientist Svante Wold coined the term
“kemometri,” in Swedish and in English it is equivalent to
“chemometrics” [6]. The science of chemometrics can briefly be
described as the interaction of certain mathematical and statistical
methods in chemical measurement processes. It has been devel-
oped as a consequence of the change in the data obtained with the
emergence of new analytical techniques as well as microproces-
sors. During 1986–1987 two journals – named “Chemometrics and
Intelligent Laboratory Systems” and “Journal of Chemometrics” –

were published.
The breakthrough in chemometrics came in the 21st century by

various software development companies, which promoted equip-
ment intellectualization and offered new methods for the con-
struction of new and high-dimensional hyphenated equipment.
This hyphenated equipment has opened many new options for
data analytical method improvement. Now, chemometrics plays a
major role in analytical chemistry [7].

3. Chemometrics (multivariate data analysis) tools

Multivariate data analysis involves the analysis of data consist-
ing of numerous variables measured from a number of samples.
The aim of multivariate data analysis is to determine all the
variations in the data matrix study. Thus, chemometric tools try
to find the relationships between the samples and variables in a
given data set and convert into new latent variables. Multivariate
data analysis is mainly classified into multivariate regression and
multivariate calibration methods based on complexity of the data
estimated.

Multiple linear regression is widely applied for solving various
types of problems in one or few component analyses; however, in
many cases the involvement of multiple variables' interaction of
analytes with each other, especially in herbal medicines (HMs),
leads to quantify error. Therefore, in those cases biased regression
methods can provide better results [8]. These methods are com-
monly known as multivariate calibration methods. Therefore, in this
article we discuss both multiple linear regression and multivariate
calibration methods with their corresponding examples.

3.1. Multivariate regression method

In study of most of the chemicals, the concentration of one or
more analytes which has to be determined is based on measured
properties of the system [9]. For example, linear regression
equation between two variables, concentration and absorbance,
for the spectrophotometric determination of X analyte at λ
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wavelength can be defined by the following equation:

AXi ¼ bXiCX þaXi ð1Þ
where CX and AXi are the concentration and absorbance of the
analyte X at λ wavelength, respectively, bXi is the slope of the linear
regression equation and aXi is the intercept of the regression
model [10]. Absorption of electromagnetic radiation at λ can be
related to concentration through the Beer–Lambert law.

log Io=I ¼ αcl ð2Þ
where I is the intensity of light at λ passing through a sample
of length l, Io is the light intensity incident on the sample, c is
he concentration and α is the absorptivity of the sample at
the specific wavelength. Mixture containing multiple analytes
becomes more complicated and to resolve these components we
need a regression model. Although there are different types of
models, generally linear, interaction and quadratic models are
most often used [11]. A linear model is

Y ¼ ε1c1l þ ε2c2l þ⋯þ εpcpl þ E ð3Þ
where Y is the response of a particular sample at λ, εp is the molar
extinction coefficient for the pth sample, cp is the corresponding
concentration and E is the spectral error. If ε is measured at several
wavelengths, then the equation obtained is

YjðλiÞ ¼ ∑
p

k ¼ 1
εkckjlþ Ey ð4Þ

where i is the index for wavelengths, j is the index for samples, p is
the number of components to be determined and Ey is spectral
errors. In matrix notation, Eq. (4) can be written as

Y ¼ CnKþEY ð5Þ
where Y is the j� i matrix of calibration spectra, C is the j� l
matrix of component concentration, K is the l� i matrix of
absorptivity-path length products, and EY is the j� i matrix of
spectral errors.

3.1.1. Multiple linear regressions
3.1.1.1. Tri-linear regression-calibration (TLRC). It is a calibration
model used to determine the mixture having three analytes with
the condition that they are not interfering with each other. For
example, we have three analytes (X, Y and Z) that are measured at
three wavelength sets ðλi ¼ 1; 2 and 3Þ. The following equations
can be written for a three-component analysis:

Amix1 ¼ bX1CXþ bY1CY þ bZ1CZþ aXYZ1 ð6aÞ

Amix2 ¼ bX2CXþ bY2CY þ bZ2CZþ aXYZ2 ð6bÞ

Amix3 ¼ bX3CXþ bY3CY þ bZ3CZþ aXYZ3 ð6cÞ
where Amix1, Amix2 and Amix3 represent the absorbance of the
mixture of X, Y and Z analytes at three-wavelength sets, bX1, 2 and

3, bY1, 2 and 3 and bZ1, 2 and 3 are the slopes of linear regression
equations of X, Y and Z, respectively, and aXYZ1, aXYZ2 and aXYZ3 are
the sums of intercepts of linear regression equations at the three
wavelengths.

Eq. (6) in matrix notation is represented as

Amix1

Amix2

Amix3

2
664

3
775¼

bX1 bY1 bZ1
bX2 bY2 bZ2
bX3 bY3 bZ3

2
664

3
775n

CX

CY

CZ

2
64

3
75þ

aXYZ1
aXYZ3
aXYZ3

2
64

3
75 ð7Þ

This equation can also be written as

ðAmix�aXYZÞ3n1 ¼ K3n3 UC3n1 ð8Þ

The matrix, b, corresponding to the slope values of linear
regression equations is called the matrix, K, which is expressed as

K ¼
bX1 bY1 bZ1
bX2 bY2 bZ2
bX3 bY3 bZ3

2
664

3
775 ð9Þ

In case, for the calculation of the concentration of the analytes,
X, Y and Z in ternary mixture, the matrix ðAmix�aXYZÞ3n1 is multi-
plied by the inverse (K�1)3n3 of the matrix K3n3 and it can be
written as

C3n1 ¼ ðk�1Þ3n3ðAmix�aXYZÞ3n1 ð10Þ

This procedure is the mathematical basis of the TLRC method
for multi-component analysis. The developed calibration model
can be applied easily to the resolution of the three-component
mixtures. However, this method is not appropriate to resolve
mixtures with more than three components in a pharmaceutical
mixture [12,13].

3.1.1.2. Multi-linear regression-calibration (MLRC). In case the
absorbance values of a mixture of three or more analytes are
measured at n wavelengths ðλi ¼ 1;2;…;nÞ, the following set of
equations can be written for a multi-component analysis:

Amix1 ¼ bX1CXþ bY1CY þ⋯þbM1CMþ aXY…m1

Amix2 ¼ bX2CXþ bY2CY þ ⋯þbM2CMþ aXY…m2

⋯
⋯

Amixn ¼ bXnCXþ bYnCY þ ⋯þbMnCMþ aXY…mn

ð11Þ

where Amix1, Amix2, … and Amixn represent the absorbances of the
mixture of X, Y, … and m analytes at the selected wavelength set,
(λi–λn); bX1, 2, …, n, bY1, 2, …, n, …, and bM1, 2, …, n are the slopes of n
linear regression equations of m components and aX…m1, aXY…m2,…

and aXY…mn are the sums of intercepts of linear regression
equations at n wavelengths.

In the matrix terms, the multi-equation system in Eq. (11) can
be formulated as follows:

Amix1

Amix2

⋮
⋮

Amix3

2
6666664

3
7777775
¼

bX1 bY1 … … bm1

bX2 bY2 … … bm2

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮
bXn bYn … … bmn

2
6666664

3
7777775
n

CX

CY

⋮
⋮

CmM

2
6666664

3
7777775
þ

aXY…m1

aXY…m2

⋮
⋮

aXY…mn

2
6666664

3
7777775

ð12Þ

Thus Eq. (12) can also be written as

ðAmix�aXY…:mÞnn1 ¼ Knnm UCmn1 ð13Þ

The matrices Cmn1 are calculated from Eq. (13) as follows:

Cmn1 ¼ ½ðKT ÞmnnðKÞnnm��1
n½K �1�mnnnðAmix�aXY…mÞnn1 ð14Þ

In this case, the MLRC model contains the use of linear algebra,
also known as matrix mathematics. This calibration model can be
applied for the multi-resolution of a multi-component mixture
system containing m compounds. But it has limited applicability
on biological and herbal mixtures [12–14].

3.1.2. Multivariate calibration methods
Multivariate calibration methods have been widely used

because it analyses those analytes that interact with each other.
In these methods, first we require the preparation of the training
set from which a series of properties has been measured and then
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the prediction set is made in which the training set is used to
determine the concentration of the components of unknown
mixtures from their spectral data [15].

3.1.2.1. Classical least squares (CLS). This method assumes Beer's
law model with the absorbance at each frequency being propor-
tional to the component concentrations. In matrix notation, Beer's
lawmodel form calibration standards containing l chemical compo-
nents with the spectra of n digitized absorbances is given by

A¼ CnKþEA ð15Þ
where A is the m�n matrix of calibration spectra, C is the m� l
matrix of component concentration, K is the l�n matrix of
absorptivity-path length products, and EA is the m�n matrix of
spectral errors.

The classical least squares solution during calibration is given
as follows:

K ¼ ðCTCÞ�1CT
nA ð16Þ

where K represents the matrix of pure component spectra at unit
concentration and unit path length.

Analysis based on the spectrum of unknown components
concentration (samples) is given as follows:

c0 ¼ ðKKT Þ�1KnA ð17Þ
where c0 is the vector of predicted concentrations and KT is the
transpose of the matrix K [16,17]. CLS is a linear least square
method and its main disadvantages are limitations in the matrix
shapes that linear models can assume over long ranges, possibly
poor extrapolation properties, and its sensitivity to outliers.

3.1.2.2. Inverse least squares (ILS). This method treats these
concentrations as a function of absorbance. The inverse of Beer's
law model for m calibration standards with spectra of n digitized
absorbance is given by

C ¼ AnPþEc ð18Þ
where C and A are as before, P is the n� l matrix of unknown
calibration coefficient relating the l component concentrations of
the spectral intensities, and Ec is the m� l vector of errors. The
inverse least square solution during calibration for P is

P ¼ ðATAÞ�1AT
nC ð19Þ

In this method the concentration of the analyte in the unknown
sample is given as

c0 ¼ aTnP ð20Þ

where c0 and a represent the concentration and spectrum of the
unknown analyte, respectively. Since in ILS the number of fre-
quencies cannot exceed so that the total number of calibration
mixtures is used, and stepwise multiple linear regressions have
been used for the selection of frequencies [17–19].

3.1.2.3. Partial least square regression (PLSR). PLSR is used to
analyze strongly collinear and noisy data with numerous X
variables (independent variables) and also simultaneously model
the several response variables, i.e. Y (dependent variables). MLR in
which modeling of Y by means of X is done as long as when data is
few and fairly uncorrelated. However, in modern instrumentation
only X variables are in larger numbers and also strongly correlated
so that they are usually noisy and incomplete [20,21]. PLSR allows
one to inspect more complex problems by handling numerous and
collinear X variables and response variables Y and analyze data in a
more rational way.

Mean centering or scaling of both X and Y data matrix is
performed in PLSR so that it is fitted in such a way that it describes
the variance of X and Y. PLSR is a maximum covariance method,
because the main aim of PLS is to predict the y-variables from the
x-variables. PLSR finds out the new variables for both X and Y
matrices, i.e. X-scores (T) and Y-scores (U), respectively [22].

X-scores estimate the linear combination of variable xk with
coefficient of weight (Wn)

T ¼ X UWn ð21Þ

However, the weight W can be transformed to Wn which is
directly related to X [23].

From Eq. (21), Wn can be written as

Wn ¼WðPTWÞ�1 ð22Þ

The PLSR model can be supposed to consist of an outer relation
and an inner relation where the outer relation describes the X and
Y matrices individually while the inner relation links the two
matrixes together. The outer relations are given by the following
equations:

X ¼ T UPT þE ð23Þ

Y ¼ U UCT þF ð24Þ
where PT is the loading matrix of the X space, CT is the loading
matrix of the Y space. E and F are the residual matrices of the X and
Y spaces, respectively.

X scores (T) are also good predictors for Y variables, i.e.
correlated according to the following equation:

Y ¼ T UCT þG ð25Þ

By combining Eqs. (21) and (25) we can write

Y ¼ XWnCT þG¼ XBþG ð26Þ
where

B¼WnCT ð26aÞ
where B represents the PLSR coefficient and G is the residual
matrix. The prediction of y-variables of new samples is determined
by Eq. (26).

By putting the value of Wn from Eq. (22) in Eq. (26a)

B¼WðPTWÞ�1CT ð27Þ

The part which is not explained by the model is called resi-
duals. It is useful in determining model applicability which is
indicated by residual value. Large residual value indicates that the
model is poor. When the first PLS component has been calculated,
then further one can be calculated based on the residual matrices.
This process continues until we achieve approximately 99 of the
explained variance. The number of significant PLS components in a
calibration model can be decided by means of cross-validation
[24–27]. The main limitation in this method is the preparation of
calibration as well as the prediction of the set and the employing
of human decision for selecting the number of factors. In spite
of the wide applicability of this method, it is not applicable to
complex herbal mixtures.

3.2. Multivariate decomposition methods

These methods are useful to resolve multivariate data by
reducing their dimensionality into a number of correlated vari-
ables, called the latent variables (principal components).
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These methods are applied by decomposing the data into lesser
dimensions, i.e. unfolding of three-way data is likely to be slicing
up the three-dimensional data cube into two-dimensional tables.
And then further placing these tables side by side to each other
creates a large two-dimensional data matrix. These methods are
further explained in the following sections given below.

3.2.1. Principal component analysis (PCA)
The central idea of PCA is to reduce the dimensionality of a data

set consisting of a large number of interrelated variables, while
retaining as much as possible of the variation present in the data
set. This is achieved by transforming to a new set of variables, which
are uncorrelated and ordered so that the first few components
retain most of the variation in all the original variables [28–30].

PCA is based on eigenvector decomposition of the covariance
matrix of the process variables. Here, we will use that rows of a
data matrix X correspond to samples while columns correspond to
variables [31,32]. For a data matrix X with m rows and n columns,
the covariance matrix of X is defined as

COV ðXÞ ¼ ðXTXÞ=ðm�1Þ ð28Þ
If the columns of data matrix X are made ‘mean centered’ and

‘autoscaled’ then Eq. (28) gives the correlation matrix of X. PCA
decomposes the data matrix X as the sum of the outer product of
vectors score t (i.e. contain information regarding the interaction
of the samples to each other) and loading p (i.e. eigenvectors of the
covariance matrix) plus a residual matrix E

X ¼ t1pT1þt2pT2þ ⋯þ tkp
T
k þE ð29Þ

Here kmust be less than or equal to the smaller dimension of X.
Fig. 1 represents the decomposition of data matrix by using PCA,
where X is decomposed into score and loadings up to the desired
response.

COV ðXÞpi ¼ λipi ð30Þ
where λi is the eigenvalue associated with the eigenvector p.

Score vector ti (orthogonal set) is the linear combination of the
original X data which is defined by pi (orthonormal set), calculated
by the following equation:

Xpi ¼ ti ð31Þ
The λi in Eq. (30) describes the amount of variance present in

the ti pi pair. The ti pi pairs are in descending order of λi and the
first pair captures the largest amount of information of any pair in
the process. It is also proved that the ti, pi pair captures the
greatest amount of variation in the data that is possible to capture
with a linear factor and then each next pair captures the greatest
possible amount of variance remaining at this step. Further,
PCA describes data by using much fewer variables compared to
the original data [33].

It is also possible to calculate a lack of model fit statistic Q, for
the ith sample in data matrix X, i.e. xi:

Q ¼ xiðI�PkP
T
k ÞxTi ð32Þ

where Pk is the matrix of the first k loadings vectors retained in the
PCA model and I is the identity matrix of appropriate size (n by n).
The Q statistic measures the amount of variation in each sample
not captured by the k principal components retained in the model
and also tells how well each sample conforms to the PCA model.

Hotelling's T2 statistics measures the variation present within the
PCA model. T2 is the sum of normalized squared scores defined as

T2 ¼ xiPλ�1PTxTi ð33Þ

The matrix λ�1 is a diagonal matrix containing the inverse
eigenvalues associated with the k eigenvectors (principal compo-
nents) retained in the model.

PCA based on singular value decomposition (SVD) [30,34] is
explained using the matrix X and it can be written as

X ¼UDVT þE ð34Þ
where U contains the same column vectors as does t (score), VT is
identical to PT (loading) but normalized to length one and D is a
diagonal matrix. These diagonal elements of D are the square roots
of the eigenvalues of XTX.

Once the PC model has been developed for a “training matrix”
then it is fitted to the model, giving scores for the new objects or
loadings for the new variables. The formula for a new object x is as
follows:

t ¼ xP ð35Þ

PCA based on non-linear iterative partial least squares (NIPALS)
[34–36] algorithm is explained using matrix X which is scaled for
each dimension.

Score vector t is selected from the column of matrix X with the
largest variance and then the loading vector pT is calculated using
the following equation:

pT ¼ tTX=tT t ð36Þ
Now p is normalized to unit length by multiplying a constant
factor c.

c¼ 1=
ffiffiffiffiffiffiffiffi
pTp

p
ð37Þ

Then the new score vector is calculated for the ith element
using the following equation:

t ¼ Xp=pTp ð38Þ

Check the overlapping among different data using the sum of
squared differences between all elements in two consecutive score
vectors. If the data meets then continue with Eq. (38), otherwise
find other score values with the second largest variance. If overlap
has not been reached in the maximum number of iterations, i.e.
20, then there is no strongly preferred direction of maximum
variance.

For calculating residual we use the following equation:

E¼ X�tpT ð39Þ
PCA is widely applicable in herbal and biological mixtures and

easily resolved data using latent variables, but it also employs the
selection of a number of components which is human decision-
based and thus leads to chances of error. Dimension reduction can
only be achieved if the original variables were correlated. If the

Fig. 1. Representing schematic description of data matrix X into various PCs.
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original variables were uncorrelated, PCA does nothing, except for
ordering them according to their variance.

3.2.2. Parallel factor analysis (PARAFAC)
Parallel factor analysis (PARAFAC) is a decomposition method

for three-way arrays that can be seen as a simplification of bilinear
PCA to higher order arrays. This multi-way method originates from
psychometrics [37,38]. In this, data decomposition is made into
tri-linear components. Each component consists of one score
vector and two loading vectors instead of one score and one
loading as in PCA.

The PARAFAC model for three-way array is given by three loading
matrices, A, B and C, with elements aif, bjf, and ckf. The PARAFAC
model of a three-way array minimizes the sum of the squares of the
residuals eijk for F components [39,40].

xijk ¼ ∑
F

f ¼ 1
aif bjf ckf þeijk ð40Þ

For the fth column of loading matrix equation can be written as

X ¼ ∑
F

f ¼ 1
af bf cf ð41Þ

where af, bf and cf are the fth columns of the loading matrices A, B
and C, respectively.

Alternating least squares (ALS) finds out the solution of the
PARAFAC model sequentially assuming two modes of loading
which are known and then estimates the parameters for the
unknown set [41].

The additional advantage of PARAFAC over PCA is to eliminate
the rational problem. By using the right number of components in
PARAFAC where tri-linear data is needed, we can find the true
spectra with appropriate signal-to-noise ratio. Hence, loadings
obtained with PARAFAC can be interpreted directly [42]. Further-
more, in the PARAFAC algorithm all the components are calculated
simultaneously which is not possible in PCA because it requires a
number of steps. It is the most advanced method used for the
resolution of three-dimensional data obtained from different
hyphenated techniques and the method has wide applicability in
herbal mixtures, impurity profiling, etc.

3.3. Hierarchical cluster analysis (HCA)

Cluster analysis is a multivariate technique that arranges com-
ponents on the basis of their characteristics. It classifies compo-
nents on the basis of their similarity in space. As a result, cluster
exhibits high homogeneity in the intergroup and high heteroge-
neity among different groups [43–45].

Hierarchical agglomerative clustering provides good similarity
correlation of data of one sample to the entire data of other
samples. It is further expressed graphically as a picture of different
groups and their proximity by high reduction in dimensionality of
the original data. The HCA dendrogram is based on the assumption
that the sample having similar values numerically is close to each
other in space so that the sample with high similarity has high
proximity. In cluster analysis similarity is measured on the basis of
distance between different data points; so Euclidean distance (ED)
and Mahalanobis distance (MD) are used to measure the distance
between clusters.

For two clusters r and s having a number of components nr and
ns, respectively, ED and MD are calculated as

EDrs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxr�xsÞðxr�xsÞT

q
ð42Þ

MDrs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxr�xsÞV �1ðxr�xsÞT

q
ð43Þ

where V is the covariance matrix.
The basic process of HCA is explained using N data sets to be

clustered. Assign each data set as a cluster so there are N clusters
and the distance between different clusters represents similarity
between data sets. Then find the closest pairs of cluster and merge
them into a single cluster and then finally compute the distance
between new clusters that has to be formed by merging. Finally,
clustering tree of size N is obtained. The analysis is not stable
when cases are dropped; this occurs because the selection of a
case (or merger of clusters) depends on the similarity of one case
to the cluster. Dropping one case can drastically affect the course
in which the analysis progresses.

3.4. Pattern recognition methods

3.4.1. Soft independent modeling of class analogy (SIMCA)
Soft independent modeling of class analogy (SIMCA) [46–48] is

a supervised classification technique that uses PCA or PLS for
classification by creating confidence region around each class
using residuals of the samples in the calibration set. SIMCA is a
pattern recognition technique in which new objects are projected
as a member of a particular class based on their Euclidian distance
from its particular principle component space. Euclidian distance
does not exceed a confidence limit from a particular principle
component. SIMCA can also be treated as a multivariate outlier
test because it checks outliers in the space of the selected PCs. On
the basis of residual variance of the objects in the training set,
residual standard deviation (s0) is calculated as

s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑m
k ¼ 1∑

n
i ¼ 1e

2
ik

ðm�1�aÞðm�a�1Þ

s
ð44Þ

where e2ik is the residual of object, k is the calibration set for
variable i, m is the number of observations in the calibration set, n
is the number of variables and a is the number of principal
components. The number of degrees of freedom given in the
equation is used in case when the number of observations is less
than the number of variables, i.e. mrn.

The residuals of the training set follow normal distribution and
the F-test may be used to describe the critical value of Euclidean
distances of the objects towards the model.

scrit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Fcrits20

q
ð45Þ

where Fcrit is the tabulated value for the specific degree of freedom
at a significant level. For a new object xnewj that belongs to a certain
class having residual vector enewji , the residual standard deviation
(sj) is calculated as

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i ¼ 1ðenewji Þ2
ðm�1�aÞ

s
ð46Þ

By investigating whether the residual variance sj is significantly
different from the pooled residual variance s0 of the model or not.
This is done by calculating the Fnewj and comparing it with the
tabulated critical value Fcrit.

Fnewj ¼ s2j =s
2
0 ð47Þ

Mahalanobis distance (MD) proposed by Hawkins is used
instead of Euclidean distance for multivariate outlier tests. Further
descriptions of SIMCA can be found elsewhere. An attractive
quality of SIMCA is that a principal component mapping of the
data has occurred. Hence, samples that may be described by
spectra are mapped onto a much lower dimensional subspace
for arrangement. If a sample is comparable to the other samples in
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the class, it will lie closer to them in the principal component map
defined by the samples indicating that class [49,50].

3.4.2. Linear discriminate analysis (LDA)
LDA is a supervised pattern recognition method, which is used

in cases where class variance is asymmetrical [51,52]. This method
maximizes the ratio between both variances compared to the
within-group variance. It searches for a linear function of the
variable in multivariate space. When the number of variables is
larger than the number of observations in multi-dimensional data,
then we cannot use LDA directly. In that case first PCA is employed
for data compression to transform the original data set comprising
of large number of inter-correlated variables into a reduced new
set of variables. LDA makes a discriminate function for each group
according to the following equation:

FðGiÞ ¼ kiþ ∑
n

j ¼ 1
wijpij ð48Þ

where i represents the number of groups (G), ki is the constant of
each group, n is the number of parameters used to classify a data
set into a given group and wj is the weight coefficient assigned by
LDA to a selected parameter (pi).

3.5. Chemometric resolution methods (CRMs)

The main goal in the analysis of any multi-component system is
getting useful information from the raw experimental data and
knowledge of the number of chemical components in the analyzed
sample or certain important retention regions. It is an important
analytical objective especially in herbal drugs. The common
purpose of all CRMs is providing the linear model of individual
component contributions using solely the raw experimental mea-
surements [53–55]. CRMs decompose mathematically a mixed
response from instrumental data into the pure contributions due
to each of the components in the system. Further, this response is
organized in the matrix X containing raw information about all the
components present in the data set. Resolution methods allow
the decomposition of data matrix X into the dot product of two
data matrices C and ST associated with the row and the column
direction of the data matrix X, respectively, and each of them
includes the pure response profiles of the n components. In matrix
notation, the expression valid for all resolution methods is

X ¼ CnST þE ð49Þ
where X (r� c) is the original data matrix, C (r�n) and ST (n� c)
are the matrices containing pure response profiles related to the
data variation in the row and in the column direction, respectively,
and E (r� c) is the residual variation of the data set that is not
related to any chemical contribution.

Parameters r and c represent the number of rows and the
number of columns of the original data matrix, respectively, and n
is the number of chemical components. We will give a schematic
representation in Fig. 2 on how the various MCR methods work. In
resolution methods, there is no need of any previous knowledge of
chemical or mathematical expression to analyze the data set.
It makes these methods useful in routine analysis. However, initial
information that can be obtained from instrumental analysis
influences positively the resolution of the system. Thus, this
information can be used to build good initial estimates of con-
centration profiles and responses.

In many CRMs, preliminary analysis derived from principal
component analysis (PCA) is one of the most basic and widely
used chemometric tools discussed above to find the number and
direction of the relevant sources of variation in a bilinear data set.
The information provided by PCA is essential in the resolution

process and in many resolution methods to determine the total
number of chemical components, which basically affect the
ambiguity of the final solutions. Therefore, our main aim is to
discuss the various important resolution methods which minimize
the source of uncertainty in the analytical results and to make
these methods familiar with regular analysis.

3.5.1. Rank annihilation factor analysis (RAFA)
Rank annihilation factor analysis (RAFA) [56,57] is the first

method used for the decomposition of three-way data. RAFA is
based on rank analysis for two-way bilinear matrix and based on
the principle that the rank of pure analyte is one. It is used to
analyze the given component quantitatively in the presence
of other or possibly unknown two-way bilinear matrix. RAFA
involves two bilinear data sets, first is the calibration set Mstd

and the second is the sample set Mu. By measuring a mixture that
contains a known amount of analytes, a calibration set is prepared
and then the analyte has to be quantified in the sample set which
contains measurements of the sample of interest. After applying
principal component analysis (PCA) on data, rank Ru and Rs for
data matrix Mu and Ms, respectively, are obtained. Data matrix Ms

has 1 component with rank Rs¼1 and data matrix Ru is theoreti-
cally equal to 1þni (the number of interfering compounds). Then
the rank of E residual is calculated as

E¼Mu�βMs ð50Þ
where β is equal to the ratio of the concentration of the kth
component in the standard solution to its value in the mixture.
Therefore, the rank of residual matrix E is Ru�1, i.e. it only shows
interfering compounds. Matrices Mu and Ms are written as

Ms ¼ xky
T
k ð51Þ

Mu ¼ ∑
N

k ¼ 1
xky

T
k ð52Þ

where xk is the column vector containing xi and yk is a column
vector containing yj for component k. The data matrix of samples is

Fig. 2. Flow chart of the application of multivariate curve resolution methods.
Examples of 3D chromatogram obtained from LC-DAD and by using PCA and
various MCR tools resolute the pure spectral and chromatographic profile.

N. Kumar et al. / Talanta 123 (2014) 186–199192



composed of N components. The concentration of the analyte in
the standard solution is cs and in the sample is βcs. To find out β an
iterative procedure is used which plots the eigenvalues. Ideally
eigenvalues show the number of components N but in real
situations the exact number of components is not known for sure.
It becomes minimal when β exactly compensates for the signal of
the analyte in the sample.

The concentration ck of the kth constituent is now computed as

ck ¼ c0k=β ð53Þ

3.5.2. Generalized rank annihilation method (GRAM)
GRAM [58,59] is a non-iterative method from which simulta-

neous quantification of all the analytes present in the sample can
be carried out using one bilinear matrix from a mixture of
standards (calibration set), i.e., one standard for each analyte.
It can determine the relative concentration of each analyte in a
sample (unknown mixture) from which one can easily determine
the actual concentration. GRAM involves two bilinear data sets:
first is a calibration set Mstd containing spectra at each retention
time of analytes in the standard mixture and the second is a
sample set Mu containing spectra at each retention time of
analytes in the unknown sample. Both matrices Mstd and Mu are
written as

Mstd ¼ XCoY
T ð54Þ

Mu ¼ XCuY
T ð55Þ

where X ðJ1nKÞ and Y ðJ2nKÞmatrices in which J1 relate to the
normalized chromatographic profile, J2 contains spectral data and
K represents the total number of components. Co and Cu are
diagonal matrices representing the concentration of analytes.
The next step is to perform singular value decomposition (SVD)
to calculate the number of significant factors, i.e. the total number
of analytes

M¼ UDVT ð56Þ
where U contains the same column vectors as does J1, VT is
identical to J2 but normalized to length 1 and D is a diagonal
matrix. Using eigenvalue-eigenvector equation for obtaining the
eigenvalue matrix

ðS�1VMuU
T ÞZ ¼ Zβ ð57Þ

Here Z is the eigenvector matrix and β is the matrix of eigenvalues.
After this, chromatographic profile and spectral profile are calcu-
lated.

X ¼ UβZ ð58Þ

Y ¼ VðZ�1ÞT ð59Þ

The concentration ck of the kth constituent is now computed as

ck ¼ c0k=βk ð60Þ

Here βk is the eigenvalue of the kth analyte, i.e., analyte of
interest. The assignment of eigenvalue correspondence to analyte
of interest is done by the hit and trail method. This can be done
by calculating the correlation coefficient between the spectrum
of analyte in standard and sample. Finally, the eigenvalue is
calculated that is associated with the spectrum of the highest
correlation.

3.5.3. Evolving factor analysis (EFA)
EFA [60,61] is a non-iterative method based on time-dependent

rank analysis i.e., each row is associated with an increase in rank

by one. However, this method is based on the first in first out
assumption, i.e. the compound that started to elute first will
disappear first. EFA includes evolving PCA in two directions along
the retention point Rt, namely forward and backward. Eigenvalue
from forward PCA shows the retention points where chemical
components begin to appear while backward PCA indicates the
retention points where chemical components begin to disappear;
by combining information from these data we find out the elution
sequence of each of the components by this method.

The collected information is in the form of two different
regions, i.e. concentration region and zero concentration region.
Concentration window, i.e. the region where each compound
exists, is defined by performing process in both forward and
backward directions, i.e. starting from the first spectrum to the
last one and the last one to the first, respectively. Zero concentra-
tion windows are the regions where nothing elutes out from a
particular component.

This method can be understood by considering data matrix X
having n number of chemical components containing true con-
centration profile C which is a linear combination of abstract
chromatogram U and spectral profile S which is a linear combina-
tion of abstract spectrum V. Both U and V can be determined by
performing singular value decomposition (SVD).

X ¼UDVT þE ð61Þ
where U contains the same column vectors as does t (score), VT is
identical to PT (loading) but normalized to length one and D is a
diagonal matrix. These diagonal elements of D are the square roots
of the eigenvalues of XTX.

After this, we have to find out the transformation matrix T
using Eq. (62); it is used to determine the individual concentration
profile

C ¼ UT ð62Þ

Then the specific component concentration profile ci is deter-
mined by the following equation:

ci ¼Untiði¼ 1;2;…;nÞ ð63Þ

Further, this procedure is repeated to determine n components,
and at the end, the concentration profile is used to resolve the
spectral profile.

S¼ ðCTCÞ�1CTX ð64Þ
By taking advantage of the evolutionary feature of chromato-

graphic separation, this method may become the first method
used in a sophisticated manner to obtain the elution sequence
and it is also used as a main step for many self-modeling curve
resolution (SMCR) methods till now. As in EFA one can analyze the
progressively increasing sub-matrix; Keller and Massart [62]
suggested a method in which a window of fixed size is used and
moves along the retention points to perform PCA, called the fixed-
size moving window evolving factor analysis (FSMWEFA).

Eigen structure tracking analysis (ETA), which was proposed by
Toft and Kvalheim [63,64], is very similar to FSMWEFA. In this,
it starts with a window of size 2 and the size is progressively
increased by 1 up to the size when the window exceeds the
number of components in the examined window by one. Local
noise can be determined from the last evolving eigenvalue. ETA
can reveal the noise pattern as well as the elution sequence.

3.5.4. Heuristic evolving latent projections (HELP)
HELP [65,66] is a method which is used to resolve two-way

bilinear multi-component data into spectra and chromatograms of
pure constituents. This method has a feature visual interface from
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latent variable projection graph and also provides information on
the rank of the data matrix. It employs the formation of eigenvalue
plot which is plotted between logarithms of eigenvalues against
retention time. In this method one can systematically calculate the
eigenvalue for m sub-matrices containing spectra collected at
retention points 1, 1 to 2, 1 to 3,…,1 to m�1, 1 to m, where m is
the total number of retention points. Then all the eigenvalues
obtained are joined by a line. In the next step, zero concentration
regions and selective concentration region of the compound are
determined from the eigenvalue plot. Selective concentration
region is defined as the region in which only a single component
elutes out, i.e. having rank equal to one.

This method can be understood by considering data matrix X
having n number of chemical components containing true con-
centration profile C which is a linear combination of abstract
chromatogram U and spectral profile S which is a linear combina-
tion of abstract spectrum V. Both U and V can be determined by
performing singular value decomposition (SVD).

X ¼ UDVT þE ð65Þ
where U contains the same column vectors as does t (score), VT is
identical to PT (loading) but normalized to length one and D is a
diagonal matrix. These diagonal elements of D are the square roots
of the eigenvalues of XTX.

Then we have to find out the transformation matrix T which is
used to determine the individual concentration profile

C ¼UT ð66Þ

In order to determine ti for individual component i, both zero
concentration region and selective concentration region are incor-
porated in Eq. (55):

cselþ zero;i ¼ Uselþ zero;intiði¼ 1;2;…;nÞ ð67Þ
where subscripts selþzero, i imply the use of the selective region
plus the zero concentration region for component i. Then ti can be
written as

ti ¼ ðUT
selþ zero;inUselþ zero;iÞ�1UT

selþ zero;incselþ zero;i ð68Þ
Evolving latent projection (ELP) graph gives us information

about the selective region of the individual component in wave-
length as well as retention time space. Such a region can be
identified by passing straight lines in ELP graphs. After determin-
ing ti, the next step is to determine the elution pattern of a
particular component by Eq. (66). This procedure is repeated to
determine n components and at the end the concentration profile
is used to resolve the spectral profile using Eq. (64).

3.5.5. Subwindow factor analysis (SFA)
Subwindow factor analysis (SFA) [67] is a method which is

introduced directly as a solution to extract component spectra
from overlapping structures obtained from a hyphenated instru-
ment without resolving the concentration profiles. It is based on
the theorem [68] “If the concentration window of the analyte for
every interferents has a subwindow where the interferent is
absent. Now it is possible to calculate the spectrum of the analyte”.
Further, one has to select subwindowsZ2 where only spectral
component corresponding to particular analyte exists and it is
followed by identification of that component.

SFA is employed to determine a selective region, i.e. subwin-
dow in which analyte appears without interferents. It involves
determining three more subwindows, namely left subwindow,
right subwindow and middle subwindow. Left subwindow is the
one in which only left interferents are present, i.e. interfering
compound which begins to elute before the selective analyte and
appears in a chromatogram to the left of the selective analyte.

In the same way the right subwindow is one in which only the
right interferents are present, i.e. interfering compound which
continues to subsequently elute with selective analyte and appears
in a chromatogram to the right of the selective analyte. A
subwindow in which both interferents are present is called a
middle subwindow. The first step in the SFA is the recognition of
subwindows which is similar to other window-based methods and
is done by any one of the methods discussed in this article (EFA,
HELP, WFA, OPA). The difference of SFA from other methods is the
combination of elution limits in windows or subwindows.

This method is discussed by considering data matrix X in which
rank analysis is performed that gives the number of chemical
components of the left and right subwindows, say m and n,
respectively. Then the total number of chemical components in
both subwindows is mþn�1 because the analyte is common in
both. Now the procedure is used to determine the vectors
corresponding to the largest singular values which represent the
chemical information related to singular-value decomposition.
Further, common vector v corresponding to analyte in both
subspaces can be determined using the following equation:

v¼Ma¼Nb ð69Þ
where M and N are matrices with m and n columns, respectively,
but in practice Ma is not equal to Nb and one has to find out a and
b which minimize the squared norm E

E¼ ‖Ma�Nb‖2 ¼ aTMTMaþbTNTNb�2aTMTNb ð70Þ
where aTa¼bTb¼1 and MTM and NTN are identity matrices. Then
we can write

E¼ 2ð1�aTMTNbÞ ð71Þ

If a and b are left and right singular values associated with the
largest singular value di of data matrix MTN then we can write

E¼ 2ð1�d1Þ ð72Þ

The singular value of d lies in the range 0–1. By determining
vector v one can ensure that only this vector is common in both
regions or if there is no common vector present then d1 will be
significantly less than 1. Similarly if there is more than 1 common
vector then d2 will be close to 1.

Sometimes it is also possible that the rank is less than the
number of components present, i.e. subwindow limit is very
narrow. In such type of cases we have to select the outer limits
of both windows wider than that suggested by rank analysis and
change the inner limits till good fit is obtained.

3.5.6. Window factor analysis (WFA)
WFA [69,70] is a self-modeling technique developed for the

resolution of multivariate data matrix obtained from evolutionary
process. In this method we find that chemical components have
single unique maxima in the evolutionary process by specifying
the window, i.e., the region which is indigenous to a chemical
component along the evolutionary axis. After this, the concentra-
tion profile of the component is directly obtained without recourse
to any information concerning the other components.

Let X represent a data matrix where each column is a spectrum
recorded at different retention points during an evolutionary
process. Window factor analysis (WFA) assumes that the total
spectra S consist of a linear sum of abstract spectrum s. If there are
n components, then

X ¼ ∑
n

i ¼ 1
Xi ¼ ∑

n

i ¼ 1
sicTi ð73Þ
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where si and ci are vectors representing the spectra and concen-
tration profile of component i, respectively, and Xi is a matrix
representing the contribution of i to the data matrix.

Using SVD, data matrix X can be decomposed into a product of
spectral profile S which is a linear combination of abstract
spectrum V and concentration profile C which is a linear combina-
tion of abstract chromatogram U which are multiplied together to
reproduce the data within experimental uncertainty:

X ¼ UDVT ð74Þ
where D is a diagonal matrix. These diagonal elements of D are the
square roots of the eigenvalues of XTX.

Suppose X0 is a sub-matrix of X and is obtained by removing all
data columns containing signals of component n. If all other
components except for component n exist outside the window
then SVD of matrix X0 will yield a matrix So containing n�1
orthonormal spectral vectors V0

j and a matrix C0 containing n�1
concentration profile vectors Uo

j that are mutually orthogonal, so
that

XJ
O ¼ Uo

j DV
0T
j ð75Þ

A matrix Xj with columns proportional to the real concentration
of the jth compound can be calculated as follows [68–70]:

Xj ¼ ðI�V0TV0ÞX ¼ bncjns0Tj ð76Þ

where I is the identity matrix of dimension n, b is constant, and cj
and sj are concentration and spectral profile of jth component,
respectively. Xj represents an average concentration profile of jth
component and once the concentration profile for the component
is determined then the true spectral profile with least square is
determined.

3.5.7. Alternating least square (ALS)
Multivariate curve resolution (MCR) supported by the alternat-

ing least squares (ALS) [24,71–73] optimization algorithm has
been revealed as a powerful tool for resolving two- and three-
way data matrices. This method is easily adapted for tri-linear data
sets of different complexities and provides the least square
solutions. This method is used to improve the initial estimation
of either spectral or concentration profile. This method is
explained by using data matrix X which are obtained by analyzing
a mixture of different concentrations C and Xi for the ith compo-
nent:

Xi ¼ CiS
T þEii¼ 1;2;3;…; i ð77Þ

If the total number of rows and columns of spectral profile are
the same for all the samples, then all the samples are estimated
simultaneously.

X ¼

X1

X2

�
�
X i

¼

C1

C2

�
�
C i

ST þE ð78Þ

At starting point, first we have to determine the number for co-
eluted components in a particular peak cluster by principal
component analysis (PCA). Afterwards one has to determine the
initial estimation of spectral or concentration profile of analytes by
one of the best suited methods discussed above in this article (EFA,
WFA, SFA, and OPA) before ALS constrained optimization starts. In
ALS, 4 constraints – named as non-negativity [54,74], unimodality
[75,76], selectivity [65,77] and normalization – have been applied.

These constraints are applied to avoid the presence of rotational
and intensity uncertainties.

Non-negativity constraint is applied to both concentration and
spectral profiles because chemical concentrations and spectra are
only defined to be positive or zero. Unimodality is a constraint
which is frequently applied to force chromatographic elution
profiles of matrix X into a single peak shape. This constraint is
applied in the case of co-eluted components that have similar
spectra. Then it avoids the appearance of elution profiles with
double peaks. Selectivity constraint is applied either to concentra-
tion or spectral profiles. Finally, a normalization constraint is
applied to fix scale indeterminacy during ALS resolution.

In this way, all the components in a particular chromatographic
run are assumed to have the same relative signal contribution in
the spectral domain. All the differences in concentration of the
components in the mixtures will be expressed in the area of
elution profiles. Outcomes from ALS optimization are the estima-
tions of C, ST and E matrices. This gives us MCR-ALS resolved
elution profiles, pure species spectra and residuals, respectively,
fitted by the constrained ALS optimization procedure.

3.5.8. Orthogonal projection analysis (OPA)
OPA [78,79] is a stepwise process and selects one key variable

in each step. This method calculates dissimilarity based on the
mathematical concept of orthogonalization [80,81]. The method is
based on the fact that pure spectra are extreme spectra and will
cover the mixture of spectra. It compares each spectrum with one
or more than one reference spectra and searches for least correla-
tion. The first dissimilar plot represents a comparison of each
spectrum with the average spectrum. The principle of OPA is as
follows: the instrument produces a data matrix, X (mn), where the
m rows are spectra measured at regular time intervals and the n
columns are chromatograms measured at different wavenumbers.
The data matrix X is bilinear, i.e., it can be decomposed into the
product of the individual concentration matrix (C) and the pure
compound spectra matrix (S).

The dissimilarity of the ith spectrum, di, is defined as the
determinant of the dispersion matrix of Yi. In general, matrices Yi
consist of one or more reference spectra and the spectrum
measured at the ith analysis time.

di ¼ detðYT
i nYiÞi¼ 1;2;…;m ð79Þ

A dissimilarity plot is then obtained by plotting the dissim-
ilarity values against the analysis time. The spectrum having the
highest dissimilarity value is the least correlated with the mean
spectrum, and is then selected xs1. Then the dissimilarity of each
individual spectrum of X with respect to xs1 is calculated. As
before, Yi consists of one reference spectrum which is the mean
spectrum of matrix X and each xi. Then, the mean spectrum is
substituted by xs1, which is the most dissimilar spectrum in the
dispersion matrix Yi of dimensions (m(nn2)) and the spectrum
most dissimilar with xs1 is selected as xs2 and a second dissim-
ilarity plot is obtained by applying Eq. (79). The spectrum most
dissimilar with xs1 is selected as (xs2) and added to matrix Yi (m
(nn3)). Then this process continues until each spectrum contained
in X is compared with the spectra already selected and includes
the most dissimilar one into matrix Yi. Then each step is plotted
and visualized and the random profile indicates the number of
spectra equal to the number of components.

In short, we can say that the procedure consists of three steps:
(1) comparison of each spectrum of X with all spectra already
selected by applying Eq. (79), (2) plotting of the dissimilarity plot
and (3) selection of the spectrum with the highest dissimilarity
value by including it as reference in matrix Yi.
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Then, find out concentration by least-squares procedure using
the following equation:

C ¼ XnSnðSTSÞ�1 ð80Þ

where S represents the spectral matrix. Concentration profile is
obtained from least-squares by applying constrain of non-
negativity and unimodality. A new set of spectra (matrix S) is
obtained by the following equation:

S¼ XT
nCnðCTCÞ�1 ð81Þ

Then, the sum of square of residual SSR is calculated:

R¼ X�CnST ð82Þ

SSR¼ ∑
m

i ¼ 1
∑
n

j ¼ 1
r2ij ð83Þ

where rij is the difference between the measured and the pre-
dicted absorbance values at time i and wavelength j. This process
continues until the relative difference in the SSR between two
successive iterations is lower than a pre-defined threshold.

4. Application of chemometric tools in analytical chemistry

Analytical application of chemometric technique is given in Table 1,
which shows use of data from multivariate techniques generated with
the aid of analytical techniques. This data is a compilation of the
literature available in Scopus [82] and various research works were
carried out using chemometric tools. This comprehensive review
focuses on the application of various chemometric techniques from
its advent to the present era. In this article we have tried to
incorporate maximum research work dealing with multivariate data
analysis in the field of analytical chemistry (i.e. plant and herbal
medicines and mixtures/miscellaneous compounds) and classified

Table 1
Chemometric methods used in analytical techniques classified on the basis of herbal medicines and mixtures of miscellaneous compounds.

Analytical technique Chemometric method Plant and herbal medicine Mixtures and miscellaneous compounds

UV-spectrometry TLRC [83]
MLRC [83]
CLS [83,84,86–88,92,96,99,100,102–104]
ILS [19,84–88,99,102–104]
PCR [19,84–86,88,89,92–96,99–104,106]
PLSR [84,88–106,145]

HPLC-DAD PCA [107–110,112,113,115,146–151] [120]
CLS, PLS, PCR [154]
PLS [107,112]
PARAFAC [136,152] [119,135,155–157]
HCA [108,110,125] [147]
SIMCA [112,129]
RAFA [123,124,126,127,158]
GRAM [121,122,135,159–161]
EFA [138,151]
FSMW-EFA [130]
WFA [138]
OPA [130,138]
MCR-ALS [136] [120,128,130,131,135,155,162]
PCA-LLS [153]

LC–MS PARAFAC [155]
MCR-ALS [132,133]

LC–NMR EFA, SFA, ITTFA, MCR-ALS, OPA, AUTOWFA [139]
PCA [163]

UPLC-DAD PCA, HCA [111,134]
UPLC–MS PCA [164]
GC–MS PCA [117] [165]

GRAM [141]
PARAFAC [140,165]

GC–GC–MS PARAFAC [137]
PLS-DA [166]

HS-SPME–GC–MS PCA [114]
NIR PLS, PCA [118]

SIMCA [50]
FT-IR PLS-DA [167,168]

PCA [116,169]
Raman spectroscopy PCA, SIMCA [170]
TLC-FD MCR-ALS [171]
Spectrofluorimetry PLS [172]

PARAFAC [173]

CLS: classical least square; EFA: evolving factor analysis; FSMW-EFA: fixed size moving window evolving factor analysis; FT-IR: Fourier transform infrared; GC–MS: gas
chromatography–mass spectrometry detection; GC�GC–MS: two-dimensional gas chromatography–mass spectrometry detection; GRAM: generalized rank annihilation
method; HCA: hierarchical cluster analysis; HPLC-DAD: high performance liquid chromatography, with diode array detection; HS-SPME–GC–MS: head space solid-phase
microextraction coupled with gas chromatography mass spectrometry; ILS: inverse least square; ITTFA: iterative target transformation factor analysis; LC–MS: liquid
chromatography mass spectrometry; LC–NMR: liquid chromatography nuclear magnetic resonance; LLS: local least square; MCR-ALS: multivariate curve resolution by
alternating the least squares approach; MLRC: multi-linear regression-calibration; NIR: near infrared; PCA: principle component analysis; PCR: principle component
regression; PLSR: partial least square regression; PARAFAC: parallel factor analysis; PCA: principal components analysis; PLS: partial least square; PLS-DA: partial least square
discriminate analysis; OPA: orthogonal projection analysis; RAFA: rank annihilation factor analysis; SFA: sub-window factor analysis; SIMCA: soft independent modeling of
class analogy; TLC-FD: thin layer chromatography with fluorescence detection; TLRC: tri-linear regression-calibration; UPLC-DAD: ultra-performance liquid chromatography
with diode array detection; UPLC–MS; ultra-performance liquid chromatography with mass spectrometry; WFA: window factor analysis.
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them according to the analytical and chemometric techniques used.
This section describes them on the basis of obtained analytical results.

TLRC and MLRC methods are used for the multi-resolution of a
ternary mixture [83]. These methods have been proved as useful
with very simple mathematical contents for multi-resolution of
the three-component mixture systems and show accuracy in the
range 99–101% for a mixture of highly overlapping spectra. Various
approaches like CLS, ILS, PCR and PLSR have been used for the
resolution of multi-component mixture using a UV spectrophot-
ometer and their results are comparable with the HPLC methods
and it was found that the accuracy is in the range of 98–103%
[19,84–106]. A six-component mixture is resolved by PLS and PCR
and the obtained results show good agreement with the HPLC
method [95].

Two-wavelength HPLC fingerprinting was applied to the quality
assessment for 46 Cassia seed samples [107]. Based on this
method, the roasted COS, raw COS, roasted CTS, and raw CTS
samples were discriminated by PCA calculation. Moreover, the PLS
prediction models produced satisfactory results on the test set.10
triterpenoid acids were simultaneously determined by the HPLC-
DAD method in fruits of Ziziphus jujuba [108] and the method was
successfully applied to 42 samples. HPLC fingerprint analysis with
chemometric methods was used for the purpose of species
differentiation, quality evaluation and consistency check of Radix
Paeoniae collected from different sources [109]. The chemometric
methods including HCA and PCA proved satisfactory for matching
and discrimination of Artemisia selengensis [110] and Rhizoma
Coptidis samples [111]. HCA, PCA, PLS-DA and SIMCA were able
to classify samples of Ganoderma lucidum successfully in accor-
dance with the province of origin [112]. HPLC-PCA assay is used to
differentiate enotoginseng root extract from the extract of other
plant parts of notoginseng and also from the extract of Asian or
American ginseng plant parts [113].

HS-SPME/GC–MS analysis of the volatile profile of Balsamic
Vinegar of Modena coupled with statistical data analysis by means
of PCA have shown this method to be useful to discriminate
Balsamic Vinegar of Modena samples with different maturation
and aging characteristics [114]. Cnidiummonnieri fruits obtained
from different regions of China have been clustered reasonably
into different groups based on the coumarin content by principal
component analysis (PCA) and cluster analysis [115]. Adulteration
of cod liver oil with selected vegetable oils (CaO, CO, SO, and WO)
can be monitored with FTIR spectroscopy and by using PLS, normal
spectra can successfully be used to detect the level of oil adulter-
ants [116]. Scutellariabarbata from different origins was studied by
GC–MS and the results were evaluated by principal component
analysis and it was found that this method was useful for the
discrimination of its adulterants [117]. NIR spectroscopy combined
with multivariate analysis was used for the simultaneous quanti-
fication of α-phosphatidylcoline and cholesterol in liposome [118].
PARAFAC was used as a technique for resolving partly separated
peaks of lidocaine and prilocaine into their pure chromatographic,
spectral and concentration profiles [119]. HPLC-DAD combined
with MCR-ALS is used for impurity profiling in order to obtain a
good estimate of the content or relative response factors of small
chromatographic impurity peaks without knowledge of their
molar absorption coefficients and without any pre-calibration
[120]. GRAM was proved to be very useful for quantifying
contaminants in complex marine samples [121]. GRAM was used
to quantify aromatic sulfonates in water with HPLC when inter-
fering components co-eluted with the analytes of interest.
Concentrations of analyte of interest were determined more
quickly because a complete resolution is not required [122]. The
RAFA procedure was used to estimate the model parameters in a
complex gray chemical system when there was not enough
information about the whole process [123]. Mean centering of

ratio spectra using the spectrum of absorbing reagent as divisor by
combining with RAFA is used to detect the contribution of one
chemical component in an unknown sample [124]. The HPLC-DAD
method was developed to evaluate the quality of Receptaculum
Nelumbinis (dried receptacle of Nelumbonucifera) through estab-
lishing chromatographic fingerprint and simultaneous determina-
tion of five flavonol glycosides, including hyperoside, isoquercitrin,
quercetin-3-O-β-D-glucuronide, isorhamnetin-3-O-β-D-galactoside
and syringetin-3-O-β-D-glucoside [125]. RAFA was used for quan-
titative analyses of multi-component fluorescence data as acquired
in the form of an excitation-emission matrix (EEM) by the video
fluorimeteris demonstrated using 10 different samples of a six-
component poly-nuclear aromatic hydrocarbon solution whose
constituents have a wide range of fluorescence quantum efficien-
cies and spectral overlaps [126]. Simultaneous multi-component
rank annihilation method was applied to a set of six-component
poly-nuclear aromatic hydrocarbon [127]. Liquid�solid extraction
coupled to LC-DAD was applied for quantization of co-eluted
organophosphorus pesticides: fenitrothion, azinphos-ethyl, diazi-
non, fenthion and parathion-ethyl and data evaluation by Multi-
variate self-modeling curve resolution and this shows improved
resolution of the co-eluted organophosphorus insecticides and
their quantization at trace level [128]. PCA, SIMCA and HCA were
applied on HPLC fingerprint of Epimediumwushanenseas in order to
identify and distinguish their secondary metabolites [129].

HPLC-DAD was used for the analysis of a tetracycline hydro-
chloride sample and the data obtained is resolved by OPA and
FSMW-EFA into pure spectra and individual concentration profiles.
This method was successfully applied for the detection of impu-
rities in the sample [130]. Use of MCR-ALS is evaluated in the
analysis of complex biocide environmental sample mixtures by LC-
DAD and Multivariate Curve Resolution has been shown to be a
powerful Chemometrics tool to solve the lack of chromatographic
resolution and strong co-elution problems encountered in the
analysis of complex biocide mixtures in environmental samples
[131]. Resolution and quantitative determination of a mixture of
co-eluted pesticides (carbofuran, propoxur and pirimicarb) in LC–
MS by MCR are shown. Carbofuran and pirimicarb both exhibit
similar mass spectrum and co-eluting is distinguished by the
proposed MCR method [132]. Mixtures of multiple biocide com-
pounds were simultaneously analyzed in standard mixtures and in
environmental samples with little sample pretreatment using LC-
DAD; all biocide compounds were properly resolved by MCR-ALS
and quantitatively analyzed with the estimated errors always
below 20% [133]. Ultra-performance liquid chromatography–quad-
rupole time-of-flight mass spectrometry (UPLC-QTOF/MS) and
multivariate statistical analysis were used to investigate the
processing technology of Loquat (Eriobotrya japonica) leaf (pipaye,
PPY). The differences in samples processed under different meth-
ods were revealed by unsupervised principal component analysis
(PCA) [134].

GRAM, PARAFAC and MCR-ALS were able to quantify over-
lapped and highly drifted chromatographic profiles. Such profiles
can be found in the determination of compounds at very low
concentrations in natural samples [135]. MCR-ALS is evaluated in
the analysis of nine phenolic acids, both in standards mixture
samples and in strawberry juice samples, by LC-DAD [136].

In [137], 100% of 12 selected trimethylsilyl derivatized organic acid
metabolites in human infant urine were located with the Dot Map
algorithm. Vanillic acid (TMS) was located by Dot Map, but also
exhibited overlap with other organic acids. The presence of vanillic
acid (TMS) was confirmed by PARAFAC to yield pure component
information suitable for subsequent quantification. In [138], OPA is
used for the determination of the number of compounds present in
a multi-component system. The performance of the OPA algorithm is
compared with that of two window-based self-modeling curve
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resolution approaches: EFA and WFA. The results obtained with the
EFA method are slightly better than those with OPA.

Multivariate curve resolution methods are classified and the
need to check the applicability of various curve resolution meth-
ods to data obtained with different types of instruments is high-
lighted [139]. It is demonstrated that LC–NMR data can be resolved
if NMR peak cluster information is utilized. PARAFAC is proposed
in [140], for the alignment of LC–MS data in the chromatographic
direction, with moderate shifts present in the data. In [141] a semi-
automated approach is proposed for the resolution and quantifica-
tion of unresolved target-analyte with GC–MS. In this paper two
methods were utilized to correct retention-time shifts after the
GRAM method was applied. When an environmental sample of
1,4-dithiacyclohexane was analyzed, the GRAM calculated concen-
tration was evaluated with an error of about 10%.

From Table 1 we concluded that applicability of chemometrical
approaches is increased rapidly. There are thousands of research
papers across these fields using chemometric-like data processing
methods during the period 2008–2013. There has been an
increased use of multivariate methods across broad ranges of
scientific disciplines, and these tools have become rather standard
training for most graduate-level scientific disciplines.

In the past, one had to code these algorithms in order to use
them; however, this has now become basic because of more
powerful computer software packages that are available today
which provide the option of a standard form of the algorithm.
Multivariate analysis methods are now standard for basic and
applied research.

The application of hyphenated techniques with the aid of chemo-
metrics for fingerprint analysis can be very useful and the data
collected are analyzed in the form of two-dimensional matrices.
The results obtained from matrices allow a better discrimination
of the samples depending on the two variables measured. Chemo-
metrics also allows the utilization of more than one analytical method
in order to find the correlation between different variables. Chemo-
metrics is an efficient and powerful tool for the quality control of
different herbs and plants [142,143]. In [144] Lavine describes the
importance of chemometrics in regular analysis and also cited various
articles published during 2008–2009.

5. Conclusion

To evaluate the fingerprint of complex herbal products, hyphe-
nation with chromatography offers a powerful tool for separating
the individual components. After the analysis is accomplished
then for extracting useful information that resides within the
generated data, various data-handling methods are used. There-
fore, we stressed upon various multivariate methods that are used
to extract the information in the data. First various multivariate
regression methods are discussed that are used to explain the
variation in data set by latent variables. These methods are very
useful and even necessary in all branches of chemistry and the
applicability of chemometrics to very complicated problems
makes the life of a chemometrician very challenging and they
seem to work at the border of impossible. Then various multi-
variate resolution methods are explained which provide a linear
model for individual component contributions using only the raw
experimental measurements.

The advancement of multivariate methods is continuous, fast
and efficient. With the improvements in exploratory tools, adapt-
ability for analysis of complex data, quality control of herbal drugs
and assessment of the results, it can be envisioned to be an
important increase in the range of application of these methods
and a more generalized and standardized use of multivariate
methods by the analytical community.
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